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The problem of nonlinear adjustment of localized front-like perturbations to a state
of geostrophic equilibrium (balanced state) is studied in the framework of rotating
shallow-water equations with no dependence on the along-front coordinate. We
work in Lagrangian coordinates, which turns out to be conceptually and technically
advantageous. First, a perturbation approach in the cross-front Rossby number is
developed and splitting of the motion into slow and fast components is demonstrated
for non-negative potential vorticities. We then give a non-perturbative proof of
existence and uniqueness of the adjusted state, again for configurations with non-
negative initial potential vorticities. We prove that wave trapping is impossible within
this adjusted state and, hence, adjustment is always complete for small enough
departures from balance. However, we show that retarded adjustment occurs if the
adjusted state admits quasi-stationary states decaying via tunnelling across a potential
barrier. A description of finite-amplitude periodic nonlinear waves known to exist
in configurations with constant potential vorticity in this model is given in terms
of Lagrangian variables. Finally, shock formation is analysed and semi-quantitative
criteria based on the values of initial gradients and the relative vorticity of initial
states are established for wave breaking showing, again, essential differences between
the regions of positive and negative vorticity.

1. Introduction
The main motivation for the present study is the problem of geostrophic adjustment.

What is called below the one-dimensional rotating shallow water model (1dRSW),
i.e. the standard shallow water model on a rotating plane (2dRSW) where dynamical
variables do not depend on one of the spatial coordinates, is the simplest possible
model for studying this phenomenon. As such, it was first used in the pioneering
work by Rossby (1938) (cf. also Gill 1982).†

Geostrophic adjustment is a process of relaxation of an arbitrary initial perturbation
to a corresponding state of geostrophic equilibrium, i.e. the equilibrium between the
pressure force and the Coriolis force. The standard scenario of adjustment established

† As usual in geophysical applications, the centrifugal force will be neglected and molecular
dissipation will be absent in what follows.
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in the classical works of Rossby (1938) and Obukhov (1949) (see Blumen 1972 for a
review of the subsequent work) consists of an initial disturbance emitting fast inertia–
gravity waves and tending to a slowly evolving geostrophically balanced flow which
bears the whole of the initial potential vorticity (PV). The adjustment process, thus,
provides a basis for splitting of the motion into fast and slow components which is
essential for meteorological and oceanographic applications. For example, in weather
prediction it allows one after proper initialization, to filter fast waves, insignificant for
most synoptic purposes, and to follow only the slow vortical component of motion.
In practice it is, of course, done in more sophisticated models than RSW. However,
this latter was historically the first one used for this purpose.

The height perturbation defining completely the geostrophic PV, the essentially
one-dimensional approach of Rossby (1938) was to use the point-wise conservation
of PV in order to write a differential equation for the height distribution of the final
state which is presumed to be completely adjusted, starting from the PV of the initial
state. All intermediate stages of the adjustment process are, thus, omitted as only the
initial and the final states are considered. Obukhov’s (1949) approach was a thorough
treatment of the problem in the linear approximation (valid for vanishing Rossby
numbers) in two dimensions, wave emission being included.

The nonlinear geostrophic adjustment of single-scale vortex-like disturbances in
2dRSW was recently studied in detail by Reznik, Zeitlin & Ben Jelloul (2001) by
means of the multi-time-scale perturbation theory in the Rossby number. Both slow
and fast components of motion were completely resolved at the first three orders of
the perturbation theory. Although the classical scenario of adjustment and fast–slow
splitting were, generally, confirmed, it was also demonstrated that large-scale large-
amplitude initial perturbations contain near-inertial oscillations which stay coupled
to the slow vortical component of the flow for a long time and thus ‘retard’ the
adjustment process with respect to the standard scenario of fast dispersion of the
inertia–gravity waves.

Some important questions remain open regarding the fully nonlinear geostrophic
adjustment. First, there is the question of existence and uniqueness of the balanced
state or, more generally, the question of the (non-)existence of the slow manifold –
a key problem in geophysical fluid dynamics (see e.g. Leith 1980 and, for a recent
discussion, Ford, McIntyre & Norton 2000). Second, if it exists, is the balanced state
always attainable? And, if yes, what is the characteristic relaxation time? (It was
argued by Rossby (1938) that the adjustment process is very fast.) A related question
is whether adjustment is always complete. (One may think, for instance, of possible
trapped-wave modes in the interior of the balanced vortex core.) Finally, what is the
influence of essentially nonlinear wave effects, such as wave breaking, on adjustment?
(The PV is not conserved if wave-breaking takes place.)

In spite of its evident degeneracy, the 1dRSW model still contains all the essential
dynamical ingredients of the adjustment process: fast inertia–gravity waves and
‘vortices’, which become transverse jets in this context. The PV is conserved, the states
of geostrophic equilibrium are stationary solutions of the equations of motion and
thus represent an exact slow manifold. Being, however, essentially simpler than the full
2dRSW model it allows one to go further both analytically and numerically in trying
to answer the above-posed questions. Note that adjustment in the 1dRSW model is,
properly speaking, semi-geostrophic (cf. e.g. Pedlosky 1984) as it is the adjustment
of fronts and jets which takes place in one (cross-front) spatial direction. Recently a
study of the full nonlinear adjustment problem in the 1dRSW model was undertaken
numerically by Kuo & Polvani (1997) who analysed the relaxation of the stepwise
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perturbation of the surface elevation and demonstrated the formation of secondary
shocks. Nevertheless, a good agreement of the final configuration with Rossby’s
scenario was found. The same authors (Kuo & Polvani 1999) considered nonlinear
wave–vortex (jet) interactions, again in the framework of 1dRSW, by studying
scattering of wave-trains on jets and found by numerical simulations supported by
asymptotic analysis a re-adjustment of jets to their initial form, while shock formation
by strong height perturbations was again observed. It should be noted in this
context that the fully nonlinear geostrophic adjustment problem meets a general fluid
dynamics problem of the influence of rotation on shock formation and propagation.

The aim of the present paper is to fully exploit the simplicity of the 1dRSW model
by using analytic tools and to give definite answers to some of the above questions as
well as to interpret the existing numerical results. The key ingredient of our approach
is the use of Lagrangian variables, which proves to be crucial. The plan of the paper
is as follows. After a brief discussion of the model in § 2 we introduce Lagrangian
variables in § 3 and show that 1dRSW may be reduced to a single second-order PDE
well-adapted for studying the initial-value (i.e. adjustment) problem. We then present
in § 4 a perturbative approach to adjustment in these variables and prove the absence
of trapped modes. The existence and uniqueness theorem for the non-perturbative
balanced state in the case of non-negative initial PV is then proved in § 5 and
the relaxation of arbitrary initial perturbations to this adjusted state is discussed.
We analyse nonlinear periodic waves in 1dRSW (Shrira 1981, 1986; Grimshaw et al.
1998) in the Lagrangian framework (Bühler 1993) in § 6. Finally, by using the Lax
method (Lax 1973; Engelberg 1996) we study the conditions of shock formation in
the presence of rotation in § 7. Section 8 contains conclusions and discussion. We
present a proof of existence and uniqueness of the adjusted state (i.e. of the slow
manifold) in Appendix A. In Appendix B we give another one-dimensional version
of the RSW equations which corresponds to axisymmetric flows and may be useful
in applications.

2. General features of the model
The shallow water equations on the rotating plane with no dependence on one of

the coordinates (y) are

∂tu + u∂xu − f v + g∂xh = 0,

∂tv + u∂xv + f u = 0,

∂th + u∂xh + h∂xu = 0.


 (1)

Here u, v are the two components of the horizontal velocity, h is the total fluid depth
(no topographic effects will be considered), f is the (constant) Coriolis parameter,
and g is the acceleration due to gravity. Here and below ∂t , ∂x, etc. denote the
partial derivatives with respect to the corresponding arguments and ∂2

xx etc. denote
the second derivatives. Physically the model represents the classical one-dimensional
shallow water model (cf. e.g. Witham 1974) with a transverse flow added, all under
the influence of the Coriolis force. Due to the presence of the transverse jets the
dynamics is not purely one-dimensional, but rather ‘one-and-a-half’ dimensional. In
what follows we are mainly interested in the behaviour of localized jets (localized
distributions of v(x)) and/or fronts (localized distributions of ∂xh(x)). Hence, the
front or jet stretches along the y-axis and we will often call u the cross-front velocity.
In general, we will call a configuration front-like if u, v, ∂xh have a common compact
support in x.
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The model possesses two Lagrangian invariants: the generalized momentum M =
v + f x and the potential vorticity (PV) Q = (∂xv + f )/h:

(∂t + u∂x)M = 0, (∂t + u∂x)Q = 0. (2)

Linearization around the rest state h = H gives a zero-frequency mode and surface
inertia–gravity waves with the standard dispersion law

ω = ±
(
c2

0k
2 + f 2

)1/2
. (3)

Here c0 =
√

gH , ω is the wave frequency and k is the wavenumber. As usual, one may
draw a parallel between the shallow-water dynamics and the gas dynamics (modified
by rotation), so c0 is analogous to the sound speed.

The steady states corresponding to the zero mode are the geostrophic equilibria:

f v = g∂xh, u = 0, (4)

which are the exact stationary solutions (note this important difference with 2dRSW,
where they are not). Hence, in the state of geostrophic equilibrium the velocity is
entirely determined by the height perturbation and the geostrophic PV is

Q(g) =

(
f + (g/f )∂2

xxh

h

)
. (5)

Note that a geostrophically adjusted front corresponds to a stepwise h with a jet in v

given by (4). In what follows we will mostly limit ourselves to finite-energy localized
front-like configurations as initial conditions for (1), thus excluding ‘non-adjustable’
infinite-energy (cf. (4)) configurations like, for instance, a constant shear v ∼ x.

3. Lagrangian approach to 1dRSW
As will be seen below, it is physically more transparent and technically advantageous

to use the Lagrangian version of (1). For this purpose we introduce the coordinates of
Lagrangian ‘quasi-particles’ X(x, t) via the mapping x → X(x, t), where x (Lagrangian
label) is a quasi-particle’s position at t = 0 and X its position at time t . (In fact, real
Lagrangian particles are moving both in the x- and y-directions in the model; we
introduce quasi-particles: strings moving only in x.) From the Eulerian point of view
the X are just the Eulerian coordinates, but we use the notation x for the Lagrangian
labels because the standard notation a is reserved for another purpose – see below.
Hence Ẋ = u(X, t) and an over-dot will denote the (material) time-derivative from
now on, while a prime (e.g. X′ = ∂xX) will be used for differentiation with respect to
x for compactness. The two first (momentum) equations of (1) are then rewritten as

Ẍ − f v + g∂Xh = 0,

v̇ + f Ẋ = 0,

}
(6)

where v is considered as a function of x and t . By virtue of mass conservation h

evolves from its initial distribution hI (x) via the Jacobi transformation

h(X, t) = hI (x)∂Xx. (7)

By differentiating this equation (or, rather, the corresponding equation for h−1) in
time it is easy to check that it is equivalent to the continuity equation

ḣ + h∂XẊ = 0. (8)



Frontal geostrophic adjustment in rotating shallow water. Part 1 273

The second of equations (6) may be immediately integrated giving

v(x, t) + f X(x, t) = F (x), (9)

where F (x) is an arbitrary function to be determined from the initial conditions. If
vI (x) is an initial distribution of the transverse velocity then, as X(x, 0) = x,

F (x) = f x + vI (x). (10)

By applying the chain differentiation rule to (7) we may express the partial derivative
∂X as follows:

∂Xh = ∂X(hI (x)∂xX) = h′
I

1

(X′)2
− hI (x)

X′′

(X′)3
, (11)

and, thus, obtain a closed equation for X:

Ẍ + f 2X + gh′
I

1

(X′)2
+

ghI

2

[
1

(X′)2

]′

= f F. (12)

It is more convenient to rewrite this equation in terms of the deviations of quasi-
particles from their initial positions X(x, t) = x + φ(x, t):

φ̈ + f 2φ + gh′
I

1

(1 + φ′)2
+

ghI

2

[
1

(1 + φ′)2

]′

= f vI . (13)

This equation is to be solved with initial conditions φ(x, 0) = 0, φ̇(x, 0) = uI (x),
where uI is the initial distribution of longitudinal velocity. The case of a front-like
disturbance corresponds to h′

I , uI , vI with a common compact support.
It is clear from its form that equation (13) is well-suited for studies of the Cauchy

problem which is equivalent to the nonlinear geostrophic adjustment problem. An
example of low-resolution calculation using the standard MATHEMATICA routine
NDSolve is presented in figure 1 giving a qualitative picture of adjustment.

Note that in the absence of rotation, f = 0, the nonlinear equation (12) contains
only derivatives of X and not X itself and may be reduced to a linear problem
(i.e. completely integrated) by the hodograph method using Ẋ, X′ or, equivalently,
u and h as new variables and swapping dependent and independent variables:
x = x(u, h), t = t(u, h). A linear PDE for x then results – cf. e.g. Landau & Lifshitz
(1975). The presence of rotation makes the hodograph transformation ineffective.

Finally, it is worth noting that (12) may be obtained from an action principle. By
multiplying the left-hand side by hI we obtain

hI (Ẍ + f 2X − f F ) +

(
gh2

I

2X′2

)′

= 0. (14)

Equation (14) is an Euler–Lagrange equation following from the variational principle
with the action

S =

∫
dt

∫
dx L (15)
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Figure 1. Geostrophic adjustment of the double-jet configuration (chosen for technical reasons
of spatial periodicity) with a Gaussian profile of initial elevation: hI (x) = 1+ exp(−x2), slightly
imbalanced vI (x) = −2(x + 0.2 sin(x)) exp(−x2), and uI (x) = 0.1 exp(−x2), as obtained by
straightforward numerical integration of equation (13) using the standard MATHEMATICA
routine NDSolve. Time and initial positions of Lagrangian particles are along the horizontal
axes, the particle displacement X − x is along the vertical axis. Emitted fast gravity waves and
slowly dispersing quasi-inertial oscillations are clearly seen, as well as systematic displacements
of fluid particles necessary to reach the final adjusted state. At least one shock forms and
propagates toward the left, in agreement with the results of § 7, but because of low resolution
the result is the fuzzy region on the left.

and the Lagrangian density

L = hI

(
Ẋ2

2
− f 2 X2

2
+ f FX

)
− gh2

I

2

1

X′ . (16)

Introducing canonical variables (fields) P = hI Ẋ, X we obtain a corresponding
Hamiltonian:

H =

∫
dx

(
P2

2hI

+ hI

(
f 2 X2

2
− f FX

)
+

gh2
I

2

1

X′

)
. (17)

As usual, the vanishing of the first variation of the Hamiltonian δH gives the equation
for the steady state:

hI (f
2X − f F ) +

(
gh2

I

2X′2

)′

= 0, P = 0. (18)

This is just the state of geostrophic equilibrium (4) expressed in Lagrangian coordi-
nates. A straightforward calculation of the second variation δ2H shows that it is
always positive-definite and, thus, the geostrophic equilibria are formally stable.



Frontal geostrophic adjustment in rotating shallow water. Part 1 275

4. Perturbative semigeostrophic adjustment
We start our study of (13) with a straightforward perturbation analysis by noting

that if the initial conditions vI and hI are in geostrophic balance

gh′
I = f vI , (19)

then φ = 0 is an exact solution of (13). Therefore, for small deviations from exact
geostrophy (13) may be linearized and solved perturbatively. A necessary condition
for this is smallness of the initial imbalance AI = f vI − gh′

I , which will be supposed
throughout this section. It is easy to show that this condition is equivalent to the
smallness of the (cross-front) Rossby number

Ro =
U

f L
, (20)

where U and L are the characteristic velocity and the scale of the cross-front motion.
One of the advantages of the Lagrangian approach is that contrary to the Eulerian
approach where it is necessary to attribute the initial imbalance either to vI or to hI ,
the imbalance AI enters the perturbative equations as a whole.

The linearized (first-order) equation (13) is

φ̈ + f 2φ − 2gh′
I φ

′ − ghIφ
′′ = AI . (21)

We represent the solution as a combination of the slow and the fast components:
φ = φ̄ + φ̃ where the over-bar denotes the time mean and the tilde corresponds to
fluctuations around it. For the time-mean (zero mode) one obtains

f 2φ̄ − 2gh′
I φ̄

′ − ghI φ̄
′′ = AI , (22)

a linear second-order inhomogeneous differential equation. It is useful to rewrite this
equation in terms of the new variable Φ̄ = ghI φ̄. Dividing by ghI yields

−Φ̄ ′′ +

(
f 2 + gh′′

I

ghI

)
Φ̄ = AI , (23)

where we see the geostrophic PV constructed from the initial height perturbation Q
(g)
I ,

cf. (5), coming into play. Equation (23) is a linear inhomogeneous ODE with variable
coefficients and its solution may be obtained by the method of variation of constants
once solutions of the homogeneous equation are known. We are mostly interested in
the frontal case where AI is a compact support function and hI is monotonic and has
constant asymptotics. Solutions of the homogeneous equation are then exponentially
growing/decaying at both spatial infinities. However, it is not obvious that a solution
of the inhomogeneous equation decaying at both spatial infinities may be found for
arbitrary Q

(g)
I (x). By the same method which is used below in the full non-perturbative

proof (cf. Appendix A) we are able to show that unique solution φs(x) of (22) exists
for non-negative geostrophic PV: Q

(g)
I � 0.

For the time varying (fast) part of the solution a homogeneous equation

¨̃φ + f 2φ̃ − 2gh′
I φ̃

′ − ghI φ̃
′′ = 0 (24)

results. By introducing a new variable Φ̃ = ghI φ̃ this equation may be rewritten as

¨̃Φ + (f 2 + gh′′
I )Φ̃ − ghI Φ̃

′′ = 0, (25)

where the geostrophic PV enters again.Solution of the Cauchy problem for arbitrary
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initial conditions φ̃I , uI = ˙̃φI can be obtained via e.g. the Fourier transform Ψ (x, ω) =∫ ∞
−∞ e+iω t Φ̃(x, t) dt for which we get

−Ψ ′′ +


f

g




f +
gh′′

I

f

hI


− ω2

ghI


Ψ = 0. (26)

Note that Q
(g)
I plays the rôle of potential in this Schrödinger-type equation.

As φI = φ̃I + φ̄I = 0 the initial condition for φ̃ and, hence, Φ̃ follows once φ̄ is
found: φ̃I = −φ̄.

This procedure may be repeated order by order in amplitude of φ along the
lines of Reznik et al. (2001) with the difference that solutions of the zero-order
approximation (23), (25) are not known explicitly as these are equations with non-
constant coefficients. This difficulty is, however, technical, rather than fundamental.
The solution of (25) represents a packet of inertia–gravity waves propagating out of
the initial localized perturbation plus, possibly, some bound states (trapped modes).
Hence, at least on the present perturbative level, the adjustment scenario depends on
the absence (complete adjustment) or presence (incomplete adjustment) of the trapped
modes. We demonstrate below that trapping by an isolated front is impossible.

A simple argument shows that the trapped modes should be sub-inertial, i.e. having
a frequency below f . Consider the Fourier transform of φ̃ : φ̃ =

∫
dω(ψ(ω, x)e−iωt +

c.c). Then for each Fourier component ψ(ω, x) we obtain from (24):

ghIψ
′′ + 2gh′

Iψ
′ + (ω2 − f 2)ψ = 0 , (27)

which is equivalent to (26). In the case of a front-like initial configuration the
asymptotics of φ̃I and uI at infinity are zero and those of hI and Q(g) are constant:

hI |±∞ = h±, Q(g)
∣∣
±∞ =

f

h±
. (28)

Hence, at x → ±∞ (26) becomes

−Ψ ′′ +
f 2 − ω2

gh±
Ψ = 0 (29)

and in order to have bound states decaying at spatial infinity we should have ω < f .
We will show now that this is impossible.

By multiplying (27) by ghIψ
∗, where the asterisk denotes complex conjugation we

obtain (
g2h2

Iψ
∗ψ ′)′ − g2h2

Iψ
′∗ψ ′ + (ω2 − f 2)ghIψ

∗ψ = 0 (30)

and for states decaying at ±∞ an estimate

ω2 = f 2 +

∫ +∞

−∞
dx g2h2

I |ψ ′|2∫ +∞

−∞
dx ghI |ψ |2

� f 2 (31)

follows by integration. Thus, we arrive at a contradiction. Hence, there are no
sub-inertial trapped modes in the model and the frequency spectrum is continuous.
Therefore, all of the initial φ̃-perturbation will be dispersed leaving only the stationary
part φs in the vicinity of the initial perturbation. As shown in Reznik et al. (2001) the
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outgoing waves do not exert any drag upon the stationary state at lowest orders in
Ro and, thus, slow and fast variables are split in the perturbation theory, at least for
non-negative PVs. The speed of the relaxation toward the adjusted state will depend
on further details of the potential Q(g). If quasi-stationary states, i.e. those which
decay only by sub-barrier tunnelling, are present the decay rate will be exponential,
as is well-known from quantum mechanics (cf. e.g. Migdal 1977). Otherwise the decay
will be dispersive according to the t−1/2 law. Here and below we mean by ‘decay’ a
time decrease of the amplitude of a spatially localized perturbation.

5. The non-perturbative slow manifold and further discussion of the
relaxation process

The X-variables we introduced before have clear physical meaning and allow one
to directly incorporate the initial conditions on the free-surface elevation and along-
front velocity into the evolution equation (12). However, it is technically simpler to
work with partial differential equations with constant coefficients. This goal may be
achieved by an additional change of variables x = x(a), which ‘straightens’ the initial
elevation profile hI (x). We obtain the following relation between J and h (recall that
h is everywhere positive): J = ∂X/∂a = H/h(X, t), where the uniform mean height
H is introduced. By the chain differentiation rule we obtain g ∂Xh = ∂aP , where
P = gH/(2J 2) is the pressure variable. The Lagrangian equations of motion then
take the form

u̇ − f v + ∂aP = 0, (32)

v̇ + f u = 0, (33)

J̇ − ∂au = 0. (34)

These equations may also be obtained from the original Eulerian system (1) by
transforming the independent variables via solution (see for details Rozdestvenskii &
Janenko 1978)

da = h(x, t) dx − h(x, t)u(x, t) dt, dτ = dt, (35)

where a is called the Lagrangian mass variable. For positive h one obtains

∂x = h ∂a, ∂t = ∂τ − hu ∂a = ∂τ − u ∂x (36)

and the system (32)–(34) results.
System (32)–(34) is equivalent to a single equation, which may equally well be

obtained by differentiation and change of variables from (12) and, thus, contains the
full dynamics of the model:

J̈ + f 2J + ∂2
aaP = f HQ , (37)

where Q(a) is the potential vorticity in a-coordinates:

Q(a) =
1

H
(∂av(a, t) + f J (a, t)) =

1

H
(∂avI (a) + f JI (a)), Q̇ = 0.

The non-perturbative slow manifold is a stationary solution Js of (37). For a given
set of (localized) initial conditions it represents a stationary state with the same
potential vorticity as the initial one. We have

gH

f

d2

da2

(
1

2J 2
s (a)

)
+ f Js(a) = HQ(a). (38)
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This equation is nonlinear and can be rewritten as a non-autonomous ODE
describing the motion of a material point in a given potential under the action of a
‘time’-dependent force, where ‘time’ is a. Using the non-dimensional pressure variable
p = P/(gH ) and introducing the Rossby deformation radius R2

d = gH/f 2 we obtain

d2p

da2
+

1

R2
d

1√
2p

=
f

g
Q. (39)

The corresponding boundary conditions are: the external force (the right-hand side)
exactly equilibrates the potential force (the second term on the left-hand side) at
a = ±∞. Hence, a stationary solution, if it exists, is a separatrix trajectory relating
two states of unstable equilibrium for this simple one-dimensional system. Thus, the
balanced solution resembles soliton or instanton solutions in a number of physical
models.

It turns out, in spite of this tempting interpretation, that it is simpler to analyse the
problem by re-introducing X via the change of variables dX = J da which gives

− g

f

d2h(X)

dX2
+ h(X) Q(X) = f. (40)

Here PV is considered as a function of X via the inverse mapping x = x(X, t) (or
a = a(X)):

Q(X) =
1

hI (x(X))

(
f +

∂vI (x(X))

∂x

)
.

The following theorem, which gives sufficient conditions for existence and uniqueness
of the slow manifold may be proved then (the technicalities of the proof are standard
for the ODEs theory and are given in Appendix A):

Theorem. For positive Q(X) with compact support derivatives and arbitrary constant
asymptotics ( frontal case) equation (40) has unique bounded and everywhere positive
solution h(X) on R1.

It is worth noting that like any separatrix trajectory this solution is exponentially
unstable as trajectories close to it diverge exponentially, which is useful to recall while
trying to find it numerically.

Another remark is that, in general, positiveness of Q is a sufficient condition for
the absence of inertial instability (cf. e.g. Holton 1979; this instability as such is
absent in 1dRSW due to its one-dimensionality). A slow manifold in the proper sense
exists in 1dRSW with non-negative PV because the geostrophically balanced states
are necessarily steady (cf. (4)). In the full 2dRSW they may be unsteady and, thus,
subject to the Lighthill radiation making the slow manifold ‘fuzzy’ (Ford et al. 2000).†

Finally, the proof of the theorem is not constructive in the sense that it uses
the mapping x = x(X, t) which is not known explicitly. However, the Lagrangian
conservation of PV guarantees that this mapping preserves the positiveness of PV
and its asymptotics at infinity (provided infinity is a fixed point).

Linearization around the true adjusted state denoted by a subscript s gives

u = ũ, v = vs + ṽ, J = Js + J̃ ,

† After the present paper was submitted for publication an instructive discussion of the relevance
of Lighthill radiation in the presence of rotation appeared in the literature, cf. Saujani & Shepherd
(2002) and Ford, McIntyre & Norton (2002).
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˙̃u − f ṽ − gH∂a

(
J̃ /J 3

s

)
= 0, (41)

˙̃v + f u = 0, (42)

˙̃J − ∂au = 0. (43)

By using

f J̃ + ∂aṽ = 0 (44)

it is easy to obtain a single equation for J̃ and/or for ṽ:

¨̃J + f 2J̃ − gH∂2
aa

(
J̃ /J 3

s

)
= 0, ¨̃v + f 2ṽ − gH∂a

(
∂aṽ/J 3

s

)
= 0, (45)

which are equivalent, as it is easy to see by applying (44).
Let us consider solutions of the following form:

J̃ = Ĵ (a) e−iωt + c.c., ṽ = v̂(a) e−iωt + c.c. (46)

Then the corresponding equations for Ĵ and v̂ are

∂2
aa(gHsĴ ) + (ω2 − f 2)Ĵ = 0, ∂a(gHs∂av̂) + (ω2 − f 2)v̂ = 0, (47)

where we denoted Hs = H/J 3
s . We choose the equation for v̂ for further analysis

because it is self-adjoint. Note that supra-inertiality of ω and, hence, the absence of
trapped states follows trivially from (47). By using a new dependent variable ψ

v̂ =
ψ

gH
1/2
s

(48)

we transform the stationary equation to the two-term canonical form

d2ψ

da2
+

[
ω2 − f 2

gHs

− 1

4

(
(Hs)a
Hs

)2

− 1

2

(
(Hs)a
Hs

)
a

]
ψ = 0. (49)

Rewritten as
d2ψ

da2
+ k2

ψ (a)ψ = 0, (50)

this equation can be interpreted as the oscillator equation with variable frequency
kψ (a) (or as a Schrödinger equation with a potential V and an energy E such that
k2

ψ = E − V (a)). It is clear that k2
ψ can be negative for ω >f and suitable Hs . This

means that for certain intervals on the x-axis the wavenumber kψ may be imaginary
(tunnelling) and quasi-stationary states may exist. For example, in the situation
presented in figure 1 we have a double-jet configuration falling into this class.

Hence, for any non-negative distribution of initial PV a corresponding iso-PV
stationary state exists and the linear analysis shows that small perturbations relax
toward this balanced state by emission of inertia–gravity waves. The relaxation law
is, in general, a combination of dispersive ∝ t−1/2 and exponential ∝ e−Γ t decays (cf.
Migdal 1977), the latter being provided by the quasi-stationary states, if present.

The formal stability of the adjusted state discussed at the end of § 3 suggests that
the adjusted state is an attractor of equation (37) with radiation boundary conditions
(i.e. that localized large-amplitude perturbations relax toward it as well). However,
this hypothesis is yet to be proved.

Note that although we concentrated above on the Cauchy problem, scattering of
wave trains of sufficiently small amplitude may be also considered in the framework
of (45). The absence of the bound states means that there is no resonant scattering,
which corroborates the numerical results of Kuo & Polvani (1999).
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6. Nonlinear waves
It is known (Shrira 1981, 1986; Grimshaw et al. 1998) that the 1dRSW model

admits nonlinear periodic wave solutions with amplitudes bound from above by some
limiting value. In this section we show that the demonstration of this fact becomes
straightforward in the Lagrangian picture. This was first noticed by Bühler (1993) who
discovered the nonlinear waves in the model in this way.† In the adjustment context
these nonlinear waves are important in the case of periodic boundary conditions
frequently used in numerical simulations. The very fact of their existence means that
scenarios of adjustment are different in the closed (circle) and open (whole x-axis)
domains in 1dRSW.

Consider equations (32), (33), (34) and look for stationary-wave solutions in the
form u = u(ξ ) , v = v(ξ ), J = J (ξ ), where ξ = a−c t . By eliminating u via u = (c/f )v′,
where a prime denotes ξ -differentiation in this section, one finds from the equation
(34) that f J + v′ = const. From the definition of PV it follows that this constant is
equal to QH and, hence, the PV should be constant for stationary waves to exist.
The value of Q is thus fixed to be Q = f/H . The equation for v resulting from (32)
after elimination of u and J is

v′′ +
f 2

c2
v +

gH

2c2
f 3

(
1

(f − v′)2

)′

= 0 (51)

and may be integrated once after multiplying it by (c2/f 2)v′. The following integral
of motion thus results:

H =
1

2

(
c2

f 2
v′2 + v2 − gH

v′2

(f − v′)2

)
= const. (52)

By using v′ = f (1 − J ) and f v = c2J ′ + gH (1/2J 2)′ this expression may be rewritten
as

H =
1

2

[
R2

d

[
M2J ′ +

(
1

2J 2

)′]2

+ M2(1 − J )2 − (1 − J )2

J 2

]
, (53)

where we used the same notation for the integral, although it is renormalized by c2
0

with respect to (52), and introduced the Mach number M = c/c0, where c0 =
√

gH and
Rd = c0/f . The result may be reduced to the standard ‘particle-in-a-well’ mechanical
problem:

J ′2

2
+

1

R2
d

V (J ) − H
(M2 − J −3)2

= 0, (54)

where J is the particle ‘coordinate’, ξ is ‘time’,

U(J) =
1

R2
d

V (J ) − H
(M2 − J −3)2

is a singular ‘potential’ built from the ‘prepotential’

V (J ) =
(1 − J )2

2
(M2 − J −2)

and a constant H, and the ‘particle’ always moves on the zero-energy level. The
turning points of the particle trajectory are, thus, the zeros of the potential (cf.
figure 2) and a stationary-wave solution exists for values of the parameters such that

† We learned about this unpublished result when the present paper was already in preparation.
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Figure 2. (a) The ‘prepotential’ V (J ) (dashed line), for M = 2, and the full ‘potential’ U(J )
for H = 0 and Rd = 1 (solid line). (b) ‘Potential’ U(J ) for three values of the constant H:
the critical value Hc = 0.1013 . . . (solid), 0.101 (dotted curve), and 0.05 (dashed curve). A
nonlinear wave can exist for values of H such that the potential has two zeros for strictly
positive values of J . For H = Hc this is no longer the case.

there is a potential well bounded by two positive zeros (J is positive by definition). For
positive J the prepotential V has one double (J = 1) and one simple (J = M−1) zero
separated by a local extremum at J = M−2/3 which is a maximum in the ‘supersonic’
(M > 1) and a minimum in the ‘subsonic’ (M < 1) case. The position of zeros of the
whole potential U is easy to understand from this structure of V , which should be
vertically shifted by H to give the numerator of U. As U has a singularity at the local
extremum of V there are no regular bounded solutions of the problem (54) in the
‘subsonic’ case. On the contrary, in the ‘supersonic’ case the oscillating solutions are
possible. Depending on the value of H their amplitude varies from zero to a maximum
value corresponding to the coincidence of a zero and the pole of U. This value, which
is reached at H = U(M−2/3) = 1

2
(M2/3 − 1)3 would give a cusp in the profile of J

(reflection of the particle from the vertical wall). It is, however, unattainable due to
mutual cancellation of the zero and the pole at the corresponding value of H and,
thus, represents the asymptotic limit of the stationary-wave amplitudes. Note that for
J close to one (54) becomes the harmonic oscillator equation with (spatial) frequency
squared equal to

k2 =
1

R2
d(M

2 − 1)
. (55)

Recalling the definition of M this gives c2 = c2
0(1+ k−2R−2

d ) which is equivalent to the
dispersion relation (3) for the inertia–gravity waves. Hence, the stationary nonlinear
periodic waves are finite-amplitude analogues of standard infinitesimal inertia–gravity
waves – cf. figure 3. However, their amplitudes cannot exceed a limiting value. The
deviation of the emitted waves from linearity in the case of strong initial perturbations
should manifest itself in the adjustment process, especially in the periodic geometry.
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Figure 3. Height profiles of stationary nonlinear waves in physical space for various values
of M and H, with Rd = 1. The waves of shorter wavelength have Mach number M = 2, those
with longer wavelength have M = 3. The two limiting asymptotics (H = Hc) are the dotted
curves; the solid lines correspond to H = 0.9Hc in both cases. Finally, for M = 2, the wave
corresponding to H = 0.5Hc is also shown (dash-dotted curve).

7. Wave breaking and shocks in Lagrangian variables
In order to analyse shock formation in Lagrangian variables we use Lax’s method

(Lax 1973), following Engelberg (1996).
Let us rewrite the Lagrangian equations of motion in the a-variables as a system of

two equations (to avoid cumbersome formulae, all dimensional parameters are taken
to be equal to unity in this section; correct dimensions are easy to recover)

u̇ + ∂ap = v, J̇ − ∂au = 0, (56)

where v is not an independent variable and should be determined from the relation
∂av = Q(a) − J .

This is a quasi-linear system(
u̇

J̇

)
+

(
0 −J −3

−1 0

)
∂a

(
u

J

)
=

(
v

0

)
. (57)

The eigenvalues of the matrix on the left-hand side are µ± = ±J −3/2 and the
corresponding left eigenvectors are (1, ±J −3/2). Hence, the Riemann invariants are
w± = u ± 2J −1/2 and we have

ẇ± + µ±∂aw± = v. (58)

Expressions for the original variables in terms of w± are

u = 1
2
(w+ + w−) , (59)

J =
16

(w+ − w−)2
> 0, (60)

µ± = ±
(w+ − w−

4

)3

. (61)

In terms of the derivatives of the Riemann invariants r± = ∂aw± we obtain

ṙ± + µ±∂ar± +
∂µ±

∂w+

r+r± +
∂µ±

∂w−
r−r± = ∂av = Q(a) − J , (62)
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Figure 4. Shock formation in two reversed double-jet configurations given in the left and
the right column, respectively, calculated by MATHEMATICA integration of equation (13).
(a, d) Two sets of initial conditions: hI (solid) and vI (dashed) are always in geostrophic
equilibrium, and the perturbation is entirely provided by uI (dotted). (b, e) The corresponding
initial profiles of R+ (solid) and R− (dashed). According to the results of § 7, shock formation,
i.e. the appearance of a singularity in R±, is favoured in the regions with sufficiently negative
relative vorticity and/or sufficiently negative R±. The singularities in R+ and R− propagate
rightward and leftward, respectively, in x. In the case shown, shocks are expected to appear in
the regions of negative shear ([−3, −2] and [2, 3]) and originate from regions with negative
initial R± (around x = −3 for R− and x = +3 for R+); from the shift of the maxima of
R± due to the contribution of u, one can see that the leftward propagating shock should be
favoured in the first case and the rightward one in the second case. (c, f ) The Lagrangian
particle displacements φ(x, t) at successive times t = 0.5, 1, 1.5, 2 (dotted, dashed, dot-dashed
and solid lines, respectively); for readability, each curve has been displaced by 0.1 upward
relative to the previous one. A shock is a cusp in φ. One can see the formation of cusps
appearing at the expected locations and moving in the expected direction on both figures.

which may be rewritten, using ‘double Lagrangian’ derivatives along the characteristics
dr/dt± = ṙ + µ±∂ar , as

dr±

dt±
+

∂µ±

∂w+

r+r± +
∂µ±

∂w−
r−r± = Q(a) − J. (63)

Wave breaking and shock formation correspond to r± reaching the limit ±∞ in finite
time.

Introducing the new variables R± = eλr±, with λ = (3/2) log |w+ − w−|, we rewrite
equations (62) in the following form:

dR±

dt±
= −e−λ ∂µ±

∂w±
R2

± + eλ(Q(a) − J ), (64)

where ∂µ±/∂w± = (3/64)(w+ − w−)2 > 0.
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These are generalized Ricatti equations for each characteristic. The qualitative
analysis of such equations (see Lemmas 1 and 2 in Engelberg 1996) gives that:

(i) if the initial relative vorticity Q − J = ∂av is sufficiently negative breaking
always takes place whatever initial conditions are;

(ii) if the relative vorticity is positive, as well as the derivatives of the Riemann
invariants at the initial moment, breaking never takes place.

Hence, in the adjustment context, shocks should be more easy to produce on
the anticyclonic (negative relative vorticity) side of the jet. As one of the Riemann
invariants always has a negative derivative for the stepwise height profiles, shocks
should always be produced by the pure height (no vI ) adjustment, as was observed in
numerical simulations (Kuo & Polvani 1997; there, in addition, the initial height profile
was itself discontinuous). It seems that shock production in the course of adjustment of
front-like perturbations is unavoidable, because these latter never satisfy conditions of
Lemma 2 in (Engelberg 1996). Test simulations done with standard MATHEMATICA
routines support these conclusions – see figure 4. Although the Lagrangian variables
allow one to obtain the shock-formation criteria relatively easily, it is more convenient
to formulate the Rankine–Hugoniot conditions and to proceed with full-scale shock-
resolving numerical simulations of adjustment in the Eulerian coordinates. This work
is in progress and will be presented elsewhere (Bouchut, Le Sommer & Zeitlin
2003).

8. Summary and discussion
By using the Lagrangian coordinates in the 1dRSW equations we have
(i) demonstrated existence and uniqueness of the non-perturbative slow manifold

for front-like configurations with non-negative initial PVs;
(ii) proved that trapped states are impossible in front-like disturbances, but that

quasi-stationary states may exist implying, in general, more complex than simple
dispersion relaxation to the adjusted state;

(iii) analysed finite-amplitude periodic nonlinear waves existing in the model;
(iv) established semi-quantitative criteria for the shock formation.
Our analysis confirms, therefore, the Rossby scenario of adjustment for localized

fronts but with a restriction to non-negative initial PV distributions and small enough
initial departures from the balanced state. The rate of relaxation toward the adjusted
state depends on the fine structure of the latter and its capacity to support the
quasi-stationary states. Shocks do appear during the adjustment process but they do
not change the basic scenario as long as they are formed out of the front and are
outgoing. We cannot exclude at the present stage that very strong initial imbalances
may modify the classical scenario even for positive initial PVs by producing either
some sort of self-sustained nonlinear oscillations or shocks at the front location.

Probably, the most interesting question is what happens when the initial PV is
negative in some region and no proof of existence of the iso-PV balanced state is
available. This is a de facto strongly nonlinear situation and, as well as the strongly
nonlinear positive-PV case should be investigated numerically. It should be noted that
as wave breaking and shock formation with subsequent dissipative effects is the only
way for the PV-less wave component of the flow to affect the PV-bearing vortex part,
shocks should be resolved with extreme care in numerical simulations. The comparison
of reliability of existing Riemann solvers with proper inclusion of rotation is a subject
of a related work which is in progress now and will be presented elsewhere.
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Appendix A. Existence and uniqueness proof for the adjusted state
The dimensionless equation (40) is written as

d2h

dx2
− Q(x)h = −1. (A 1)

We assume that

Q(x) > 0,

Q(±∞) = Q± = const,

Q′(x) has a finite support.


 (A 2)

A general solution of (A 1) has the following form:

h(x) = C1h1(x) + C2h2(x) + h1(x)

∫ x

x0

h2(t)

W
dt − h2(x)

∫ x

x0

h1(t)

W
dt, (A 3)

where h1(x), h2(x) is a fundamental set of solutions for (A 1) without the right-hand
side, and the Wronskian W = h1h

′
2 − h′

1h2 is constant.
We define the two fundamental sets of solutions ψ1,2(x) and ϕ1,2(x) using the

asymptotic conditions at infinity. The first set is

ψ1(x) = Q
−1/4
+ exp

{
−Q

1/2
+ x

}
+ o(1), ψ2(x) = Q

−1/4
+ exp

{
+Q

1/2
+ x

}
+ o(1),

x → +∞, (A 4)

and the second set is

ϕ1(x) = Q−1/4
− exp

{
−Q1/2

− x
}

+ o(1), ϕ2(x) = Q−1/4
− exp

{
+Q1/2

− x
}

+ o(1),

x → −∞. (A 5)

Using the first set of solutions and choosing a point x0 = x2 on the right from the
support we have

h(x) = C1ψ1(x) + C2ψ2(x) + 1
2
ψ1(x)

∫ x

x2

ψ2(t) dt − 1
2
ψ2(x)

∫ x

x2

ψ1(t) dt (A 6)

(here W = ψ1ψ
′
2 − ψ ′

1ψ2 = 2) and at x → +∞ we obtain

h(x) =
1

Q+

+ exp
(
−xQ

1/2
+

)( C1

Q
1/4
+

−
exp

(
+x2Q

1/2
+

)
2Q+

)

+ exp
(
+xQ

1/2
+

)( C2

Q
1/4
+

−
exp

(
−x2Q

1/2
+

)
2Q+

)
. (A 7)
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To eliminate the growing part of the solution one should put

C2 =
exp

(
−x2Q

1/2
+

)
2Q

3/4
+

. (A 8)

The first set of solutions is a linear combination of the second set:

ψ1(x) = T11ϕ1(x) + T12ϕ2(x), (A 9)

ψ2(x) = T21ϕ1(x) + T22ϕ2(x), (A 10)

where T is the transition matrix. From the conservation of the Wronskian (ϕ1ϕ
′
2 −

ϕ′
1ϕ2 = 2) one obtains

T11T22 − T12T21 = 1. (A 11)

Substituting (A 9) and (A 10) into (A 6) we obtain another representation of the
solution:

h(x) = C1(T11ϕ1(x) + T12ϕ2(x)) + C2(T21ϕ1(x) + T22ϕ2(x))

− 1
2
(T11ϕ1(x) + T12ϕ2(x))

∫ x2

x

(T21ϕ1(t) + T22ϕ2(t)) dt

+ 1
2
(T21ϕ1(x) + T22ϕ2(x))

∫ x2

x

(T11ϕ1(t) + T12ϕ2(t)) dt. (A 12)

For the negative infinity asymptotics we choose a limiting point x1 < x2 on the left
from the support. Then we obtain for x � x1

h(x) = C1

(
T11

Q
1/4
−

exp
(
−xQ1/2

−
)

+
T12

Q
1/4
−

exp
(
+xQ1/2

−
))

+ C2

(
T21

Q
1/4
−

exp
(
−xQ1/2

−
)

+
T22

Q
1/4
−

exp
(
+xQ1/2

−
))

− 1

2

(
T11

Q
1/4
−

exp
(
−xQ1/2

−
)

+
T12

Q
1/4
−

exp
(
+xQ1/2

−
))∫ x2

x1

(T21ϕ1(t) + T22ϕ2(t)) dt

− 1

2

(
T11

Q
1/4
−

exp
(
−xQ1/2

−
)

+
T12

Q
1/4
−

exp
(
+xQ1/2

−
))

×
∫ x1

x

(
T21

Q
1/4
−

exp
(
−tQ1/2

−
)

+
T22

Q
1/4
−

exp
(
+tQ1/2

−
))

dt

+
1

2

(
T21

Q
1/4
−

exp
(
−xQ1/2

−
)

+
T22

Q
1/4
−

exp
(
+xQ1/2

−
))∫ x2

x1

(T11ϕ1(t) + T12ϕ2(t)) dt

+
1

2

(
T21

Q
1/4
−

exp
(
−xQ1/2

−
)

+
T22

Q
1/4
−

exp
(
+xQ1/2

−
))

×
∫ x1

x

(
T11

Q
1/4
−

exp
(
−tQ1/2

−
)

+
T12

Q
1/4
−

exp
(
+tQ1/2

−
))

dt. (A 13)

After a simplification we obtain

h(x) =
1

Q−
+

2C1Q
3/4
− T11 + 2C2Q

3/4
− T21 − exp

(
x1Q

1/2
−
)

− D2Q
3/4
−

2Q−
exp

(
−xQ1/2

−
)

+
2C1Q

3/4
− T12 + 2C2Q

3/4
− T22 − exp

(
−x1Q

1/2
−
)

+ D1Q
3/4
−

2Q−
exp

(
xQ1/2

−
)
, (A 14)
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where

D1 =

∫ x2

x1

ϕ1(t) dt, D2 =

∫ x2

x1

ϕ2(t) dt. (A 15)

The solution has finite asymptotics if and only if

2C1Q
3/4
− T11 + 2C2Q

3/4
− T21 − exp

(
x1Q

1/2
−
)

− D2Q
3/4
− = 0. (A 16)

If T11 	= 0 then C1 can be found from (A 16). Now we prove that T11 	= 0 for any
solution. Assume that T11 = 0 then from (A 11) we get that T12 	= 0. Therefore we
have

ψ1(x) = T12ϕ2(x). (A 17)

From (A 5) we have that

ψ1(x) = T12Q
−1/4
− exp

{
+Q1/2

− x
}

+ o(1), x → −∞.

From (A 4) we find that ψ1(x) is an integrable function. Multiplying the homogeneous
equation (A 1) by ψ1(x) for h(x) = ψ1(x) and integrating we find that∫

ψ1(x)
d2ψ1(x)

dx2
dx −

∫
Q(x)ψ2

1 (x) dx = 0. (A 18)

By integration by parts in the first integral we obtain a negative value on the left-hand
side. This value is equal to zero if and only if ψ1(x) ≡ 0. But we assumed that ψ1(x)
is a non-trivial solution. Hence, we proved the following:

Proposition 1. The equation (A 1) has a bounded solution h(x) for positive Q(x)
which is unique for the boundary conditions h(x) = Q± as x → ±∞.

A.1. Positiveness of solution

The result that any solution of (A 1) without the right-hand side can have either no
or a single zero is well-known from the Sturm theorems (cf. e.g. Hartman 1964). Now
we prove this theorem for the full (A 1). Assume that h(x1) = h(x2) = 0 and h(x) < 0
for x1 < x < x2. Integrating (A 1) from x1 to x2 we obtain

dh

dx
(x2) − dh

dx
(x1) =

∫ x2

x1

Q(x)h(x) dx − (x2 − x1). (A 19)

Obviously, the left-hand side is positive and the right-hand side is negative. As a
result we have a contradiction. Therefore there are no zeros of this kind.

Proposition 2. Any solution h(x) of the equation −h′′(x) + Q(x)h(x) = 1 has either
one zero or no zeros at all for positive Q(x).

We first prove that a non-negative solution h(x) cannot have a singular zero x0:
h(x0) = 0, h′(x0) = 0. Assume that h(x0) = 0 and h′(x0) = 0. If h(x) is non-negative
then h′′(x0) � 0. But from (A 1) we have that h′′(x0) = −1 and we arrive to a
contradiction.

Proposition 3. Non-negative solutions h(x) have no singular zeros such that h(x) = 0
and h′(x) = 0.

From Propositions 1, 2, 3 we obtain the following:

Proposition 4. A solution h(x) with asymptotics h(±∞) = 1/Q± > 0 is a positive
function of x (h(x) > 0).
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Proof. As proved, h(x) can have 0 or 1 zeros. If h(x) has no zeros then h(x) > 0
because h(±∞) > 0. If h(x) has one zero at the point x0 then h(x0) = 0 and h′(x0) = 0,
which contradicts Proposition 3.

Summarizing we formulate the main theorem.

Theorem. Under assumptions (A 2) equation (A 1) has a unique bounded and positive
solution h(x).

The same proof, save positiveness which is inessential there, can be used for (23).

Appendix B. Lagrangian approach to the axisymmetric 1dRSW
Axisymmetric motion in shallow water is described by fields depending on only one

space variable: r , the distance to the centre. As in the rectilinear case, it is possible
to reduce the whole dynamics to a single PDE for a Lagrangian variable, R(r, t), the
distance to the centre of a particle initially situated at r .

We first rewrite the RSW equations in the Eulerian framework, using cylindrical
coordinates (r, θ ) and assuming axisymmetry (∂θ ≡ 0):

(∂t + ur ∂r )ur − uθ

(
f +

uθ

r

)
+ ∂rh = 0, (B 1a)

(∂t + ur ∂r )uθ + ur

(
f +

uθ

r

)
= 0, (B 1b)

(∂t + ur ∂r )h +
1

r
∂r (r ur h) = 0. (B 1c)

Here ur (uθ ) is the radial (azimuthal) velocity, and h the total height of the fluid.
Multiplying (B 1b) by r , we recover the conservation of angular momentum:

(∂t + ur ∂r )

(
ruθ + f

r2

2

)
= 0. (B 2)

Equations (B 1) can be rewritten using the Lagrangian coordinate for the radial
position: R(r, t) is the radial position at time t of the particle that was at r initially.
Note that r changes its meaning, from here on, becoming a Lagrangian label instead
of an Eulerian coordinate.

Equation (B 2) may be immediately integrated:

R(r, t) uθ (r, t) + f
R2(r, t)

2
= G(r) . (B 3)

G(r) is determined from initial conditions: if uθI is the initial azimuthal velocity
profile, then

G(r) = r uθI (r) + f
r2

2
. (B 4)

Using the above expression, the term uθ (f + uθ/r) in (B 1a) is expressed in terms of
R(r, t) and G:

uθ

(
f +

uθ

R

)
=

1

R

(
G − f

R2

2

)(
f +

G

R2
− f

2

)
,

=
1

R3

(
G2 − f 2 R4

4

)
. (B 5)
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Mass conservation is expressed by the following relation between h(r, t) and the initial
height profile hI (r):

h(r, t) R(r, t) dR = hI (r) r dr. (B 6)

With the help of (B 5) and (B 6), the radial momentum equation becomes

R̈ +
f 2

4
R − 1

R3
G2 +

1

∂rR
∂r

(
a hI

R ∂rR

)
= 0, (B 7)

where Ṙ(r, t) = ur (r, t). The form of this equation is similar to the one found in the
rectilinear case; the advantages of the Lagrangian formulation apply here as well.

It seems odd at first glance that the second term is f 2 R/4, and not simply f 2 R.
The usual rôle of the inertial frequency f is recovered when we linearize the equation
for small disturbances. For instance, for small perturbations about the rest state

R(r, t) = r + φ(r, t), (B 8)

with |φ| � r , hI (r) = 1 and uθI (r) = 0 the following equation is obtained after some
algebra:

φ̈ + f 2 φ − ∂rφ

r
− ∂2

rrφ +
φ

r2
= 0. (B 9)

If solutions are sought in the form φ(r, t) = φ̂(r) eiωt , equation (B 9) yields, after a
change of variables, the canonical equation for the Bessel functions. The familiar
axisymmetric solutions involving Bessel functions J1 then follow (cf. e.g. Landau &
Lifshitz 1975, on axisymmetric sound waves):

φ(r, t) = C J1(
√

ω2 − f 2 r) eiωt + c.c., (B 10)

where C is the wave amplitude.
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